0%

凸优化作业-1

凸优化作业-1

Problem 1
将优化问题最小化 Axb满足x11转化为线性规划。 将优化问题 \text{最小化 } \|Ax - b\|_\infty 满足 \|x\|_1 \leq 1 转化为线性规划。

解答:

  1. 重写 Axb\|Ax - b\|_\infty

    根据范数的定义,我们可以引入一个辅助变量t,使得:Axb=max1im(Axb)it这可以转化为以下约束:(Axb)it(Axb)it对于所有 i=1,2,,m这意味着我们可以写出以下不等式:Axbt1Ax+bt1其中1是一个全1的向量。 根据 \ell_\infty 范数的定义,我们可以引入一个辅助变量 t ,使得: \\ \|Ax - b\|_\infty = \max_{1 \leq i \leq m} |(Ax - b)_i| \leq t \\ 这可以转化为以下约束: \\ -(Ax - b)_i \leq t \quad \text{和} \quad (Ax - b)_i \leq t \quad \text{对于所有 } i = 1, 2, \ldots, m \\ 这意味着我们可以写出以下不等式: \\ Ax - b \leq t \mathbf{1} \quad \text{和} \quad -Ax + b \leq t \mathbf{1} \\ 其中 \mathbf{1} 是一个全1的向量。
  2. 将问题转化为线性规划
    于是我们需要最小化tt,同时满足以下约束条件:

    Axbt1Ax+bt1x11 Ax - b \leq t \mathbf{1} \\ -Ax + b \leq t \mathbf{1} \\ |x|_1 \leq 1

    最终的线性规划可以表述为:

    最小化 t满足 Axb=teAx+b=tej=1nxj1 \text{最小化 } t \\ \text{满足 } Ax - b = t \mathbf{e} \\ -Ax + b = t \mathbf{e} \\ \sum_{j=1}^{n} |x_j| \leq 1

Problem 2

(a)证明所有满足XX是半正定的,且IXI-X也是半正定的XX构成的集合SS是凸集
假设X1,X2S考虑Y=λX1+(1λ)X2yTX1y0yTX2y0对于所有 yRn考虑任意向量yRn计算yTYy:yTYy=yT(λX1+(1λ)X2)y=λyTX1y+(1λ)yTX2y由于X1X2都是半正定的,得到:yTYyλ0+(1λ)0=0因此,Y是半正定的。现在考虑IYIY=I(λX1+(1λ)X2)=(1λ)IλX1+(1λ)I(1λ)X2计算yT(IY)yyT(IY)y=yTyyTYy=yTy(λyTX1y+(1λ)yTX2y)从而得到:yT(IY)y=yTyλyTX1y(1λ)yTX2y根据IX1IX2都是半正定的,得到:yT(IX1)y0yT(IX2)y0所以:yTyyTX1yyTyyTX2y结合线性组合性质:yTyλyTX1y+(1λ)yTX2y因此,yT(IY)y0这表明IY也是半正定的。 假设X_1 , X_2 \in S \\ 考虑Y = \lambda X_1 + ( 1 - \lambda ) X_2\\ y^T X_1 y \geq 0 \quad \text{和} \quad y^T X_2 y \geq 0 \quad \text{对于所有 } y \in \mathbb{R}^n \\ 考虑任意向量 y \in \mathbb{R}^n \\ 计算 y^T Y y : \\ y^T Y y = y^T (\lambda X_1 + (1 - \lambda) X_2) y = \lambda y^T X_1 y + (1 - \lambda) y^T X_2 y \\ 由于 X_1 和 X_2 都是半正定的,得到: \\ y^T Y y \geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0 \\ 因此,Y 是半正定的。 \\ 现在考虑 I - Y : \\ I - Y = I - (\lambda X_1 + (1 - \lambda) X_2) = (1 - \lambda) I - \lambda X_1 + (1 - \lambda) I - (1 - \lambda) X_2 \\ 计算 y^T (I - Y) y : \\ y^T (I - Y) y = y^T y - y^T Y y = y^T y - (\lambda y^T X_1 y + (1 - \lambda) y^T X_2 y) \\ 从而得到: \\ y^T (I - Y) y = y^T y - \lambda y^T X_1 y - (1 - \lambda) y^T X_2 y \\ 根据 I - X_1 和 I - X_2 都是半正定的,得到: \\ y^T (I - X_1) y \geq 0 \quad \text{和} \quad y^T (I - X_2) y \geq 0 \\ 所以: \\ y^T y \geq y^T X_1 y \quad \text{和} \quad y^T y \geq y^T X_2 y \\ 结合线性组合性质: \\ y^T y \geq \lambda y^T X_1 y + (1 - \lambda) y^T X_2 y \\ 因此, \\ y^T (I - Y) y \geq 0 \\ 这表明 I - Y 也是半正定的。
(b) 证明集合 S={XSn:rank(X)1}S = \{ X \in S_n : \text{rank}(X) \leq 1 \} 是否为凸集

证明
X1,X2S,这意味着rank(X1)1和rank(X2)1由于rank(X1)1,我们可以表示X1为:X1=u1v1T其中u1Rmv1Rn。同理,X2可以表示为:X2=u2v2T对于θ[0,1],考虑矩阵:Xθ=θX1+(1θ)X2=θ(u1v1T)+(1θ)(u2v2T)然而两个矩阵的和的秩有可能是2,故而不是凸集 设X_1, X_2 \in S,这意味着\text{rank}(X_1) \leq 1和\text{rank}(X_2) \leq 1。 \\ 由于\text{rank}(X_1) \leq 1,我们可以表示 X_1为: \\ X_1 = u_1 v_1^T \\ 其中 u_1 \in \mathbb{R}^m 和 v_1 \in \mathbb{R}^n。同理,X_2 可以表示为: \\ X_2 = u_2 v_2^T \\ 对于 \theta \in [0, 1] ,考虑矩阵: \\ X_\theta = \theta X_1 + (1 - \theta) X_2 = \theta (u_1 v_1^T) + (1 - \theta) (u_2 v_2^T) \\ 然而两个矩阵的和的秩有可能是2,故而不是凸集
Problem 3

B(0,1)Rn B(0, 1) \subset \mathbb{R}^n 是单位欧几里得球,考虑集合N(x)={uRn:uT(yx)0 对于所有 yB(0,1)}N(x) = \{ u \in \mathbb{R}^n : u^T (y - x) \leq 0 \text{ 对于所有 } y \in B(0, 1) \}

(a) 证明 ( N(x) ) 是一个凸锥

选择任意u1,u2N(x):根据定义,对于任意yB(0,1),都有:u1T(yx)0u2T(yx)0考虑非负组合:对于任意非负标量α,β0,考虑u=αu1+βu2验证条件:我们需要验证uT(yx)0对于所有yB(0,1)uT(yx)=(αu1+βu2)T(yx)=αu1T(yx)+βu2T(yx)由于u1T(yx)0u2T(yx)0,因此:uT(yx)α0+β0=0所以,uN(x)。因此,N(x)是一个凸锥。 选择任意u_1, u_2 \in N(x): 根据定义,对于任意 y \in B(0, 1) ,都有: \\ u_1^T (y - x) \leq 0 \quad \text{和} \quad u_2^T (y - x) \leq 0 \\ 考虑非负组合:对于任意非负标量 \alpha, \beta \geq 0 ,考虑 u = \alpha u_1 + \beta u_2 。 \\ 验证条件:我们需要验证 u^T (y - x) \leq 0 对于所有 y \in B(0, 1) : \\ u^T (y - x) = (\alpha u_1 + \beta u_2)^T (y - x) = \alpha u_1^T (y - x) + \beta u_2^T (y - x) \\ 由于 u_1^T (y - x) \leq 0 和 u_2^T (y - x) \leq 0 ,因此: \\ u^T (y - x) \leq \alpha \cdot 0 + \beta \cdot 0 = 0 \\ 所以,u \in N(x) 。 因此, N(x) 是一个凸锥。

(b) 给出 ( N(x) ) 的显式描述
我们可以考虑N(x)中的向量u的条件。对于任意yB(0,1),我们有:y21因此,yx的范数可以表示为:yx2y2+x21+x2要使得uT(yx)0对所有y成立,u必须在某个方向上与yx形成一个夹角不小于90度。这意味着u必须指向x的反方向。因此,N(x)可以描述为所有指向x的反方向的向量的集合:N(x)={uRn:uTx0} 我们可以考虑 N(x) 中的向量 u 的条件。对于任意 y \in B(0, 1),我们有: \\ |y|_2 \leq 1 \\ 因此,y - x 的范数可以表示为: \\ \|y - x\|_2 \leq \|y\|_2 + \|x\|_2 \leq 1 + \|x\|_2 \\ 要使得 u^T (y - x) \leq 0 对所有 y 成立,u 必须在某个方向上与 y - x 形成一个夹角不小于 90 度。这意味着 u 必须指向 x 的反方向。 \\ 因此, N(x) 可以描述为所有指向 x 的反方向的向量的集合: \\ N(x) = \{ u \in \mathbb{R}^n : u^T x \leq 0 \} \\
Problem 4

(a) 找到 ΠH(s,c)(x) \Pi_{H^-}(s, c)(x) 的公式并证明其正确性

投影公式

对于任意点 xRnx \in \mathbb{R}^n ,其在半空间 H(s,c) H^-(s, c) 上的投影可以通过以下公式给出:
ΠH(s,c)(x)=xsTxcs2s\Pi_{H^-}(s, c)(x) = x - \frac{s^T x - c}{\|s\|^2} s

证明
希望找到一个点yH(s,c),使得yx最小。根据投影的定义,最优解y应满足:sTy=cy=x+αs,其中α是一个待定的标量。我们需要找到α使得y满足sTy=csT(x+αs)=sTx+αs2=c解这个方程得到:α=csTxs2代入yy=x+csTxs2s验证y在半空间内:sTy=sTx+(csTx)=c因此y在超平面上,且由于y是通过向量s的方向调整得到的,所以y在半空间H(s,c)内。因此ΠH(s,c)(x)=xsTxcs2s 希望找到一个点 y \in H^-(s, c) ,使得 ||y - x|| 最小。根据投影的定义,最优解 y 应满足: \\ s^T y = c \\ 设 y = x + \alpha s ,其中 \alpha 是一个待定的标量。我们需要找到 \alpha 使得 y 满足 s^T y = c : \\ s^T (x + \alpha s) = s^T x + \alpha \|s\|^2 = c \\ 解这个方程得到: \\ \alpha = \frac{c - s^T x}{\|s\|^2} \\ 代入 y : \\ y = x + \frac{c - s^T x}{\|s\|^2} s \\ 验证 y 在半空间内: \\ s^T y = s^T x + (c - s^T x) = c \\ 因此 y 在超平面上,且由于 y 是通过向量s 的方向调整得到的,所以 y 在半空间 H^-(s, c) 内。 \\ 因此 \\ \Pi_{H^-}(s, c)(x) = x - \frac{s^T x - c}{\|s\|^2} s \\
(b) 证明对于任意 vRn v \in \mathbb{R}^n δR \delta \in \mathbb{R} ,都有ΠΔ(v)=ΠΔ(v+δe)\Pi_{\Delta}(v) = \Pi_{\Delta}(v + \delta e)

证明
对于v的投影:ΠΔ(v)=argminxΔxv对于v+δe的投影:ΠΔ(v+δe)=argminxΔx(v+δe)由于eTx=1的约束是线性的,且δ只是对所有坐标的均匀偏移,因此投影的结果不会受到δ的影响。ΠΔ(v)=ΠΔ(v+δe) 对于 v 的投影: \\ \Pi_{\Delta}(v) = \text{argmin}_{x \in \Delta} \|x - v\| \\ 对于 v + \delta e 的投影: \\ \Pi_{\Delta}(v + \delta e) = \text{argmin}_{x \in \Delta} \|x - (v + \delta e)\| \\ 由于 e^T x = 1 的约束是线性的,且 \delta 只是对所有坐标的均匀偏移,因此投影的结果不会受到 \delta 的影响。 \\ 故\Pi_{\Delta}(v) = \Pi_{\Delta}(v + \delta e)